If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+7t+0.6=0
a = -5; b = 7; c = +0.6;
Δ = b2-4ac
Δ = 72-4·(-5)·0.6
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{61}}{2*-5}=\frac{-7-\sqrt{61}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{61}}{2*-5}=\frac{-7+\sqrt{61}}{-10} $
| 5x+3+x=7x+4 | | -x-3(15-x)=-11 | | 2x-9-3x+4x=21 | | 2x(x-5)=5x-4 | | 5(x+2)=25. | | 5a+14=8a+4 | | -9b=81=54 | | 2x+8(-3)=36 | | 17+4y=15 | | -2x(x-5)=5x-4 | | -8n=-n | | 9a+13=6a+11 | | (12.84+x)/2.89=2.166 | | 3x-2x+7=9 | | x/7+15=85 | | 27463547183746518376458374518346283746574x+9185476139458715=1242937461735837465871265x-102923023933 | | (12.1+a)/4.9=7.71 | | 3x^2-(1.60-x)^2=0 | | (-13.3+k)/11.796=0.296 | | 1/9(2n-16)=1/3(2n+4) | | -2x+18=-1x+10 | | 2x^2+3.2x-2.56=0 | | c/8=47 | | 8(2f+3)=12f+4;5 | | (-7.3+r)/9.3=0.739 | | 63*x=127 | | -20x+15=-5(4x–3) | | -9n-8-3n=6n-9 | | 10x^2=-133 | | 1/9(2n-16=1/3(2n+4) | | Y=p^2+p | | 2(p-3)=10p+5+3p |